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THEORETICAL FOUNDATIONS OF THE
FINITE ELEMENT METHOD
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Abstract—The finite element method is nowadays the most general and one of the most powerful tools for the
analysis of structures.

It is also a general mathematical technique and the main concern of the paper is to present it in this light.
Functional Analysis is used as the ideal frame for a general abstract formulation.

The ability to predict convergence to the exact solution of a sequence of approximate solutions obtained
from patterns of finite elements with decreasing size is fundamental in the application of the method.

In case conformity between elements is obtained, the finite element method is a particular case of Ritz’s
method, so that convergence can be ensured as far as completeness is achieved.

A general completeness criterion is justified in the paper. Such criterion requires that the field components
and all their derivatives, of order not higher than the highest order of derivative entering into the energy density
expression, can take up any constant value within the element.

It is finally proved that such criterion is also a general convergence criterion, i.e. a sufficient condition for
convergence even if conformity is not achieved.

NOTATION

All the symbols will be defined where they are introduced.

The following general conventions are adopted :

1. Matrices (or vectors) will be denoted by bold face symbols: q, H.

2. The dummy index convention will be used: A;;x; = A;x; + A5, + .. ..

3. A derivative will be denoted by a comma followed by indices indicating the variables with respect to which
the function is differentiated. The order is indicated by a superscript in parentheses:

-
o 3u;
L ey

6xj6xk cee 6x,'

4. A sequence will be denoted by its general term between braces: {U,}.

1. INTRODUCTION

THE finite element method is nowadays the most general and one of the most powerful
tools for the analysis of structures.

Although it was developed for structural analysis it is really a general mathematical
technique, and the main concern of this paper is to present it in this light. Mikhlin’s
book [1] was used as a basis for such purpose.

The important problem of the convergence to the exact solution of a sequence of
approximate solutions generated by elements with decreasing size will be given special
attention. Experience seems indeed to indicate that the best control of the approximation
error consists in examining the behaviour of a sequence of that kind. It has also been
observed that no reasonable approximate solutions are likely to be generated if the type
of finite element used is such that convergence to the exact solution is not obtainable.
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Before convergence to the exact solution was given the attention it deserves, there was
a tendency to make monotonic convergence play the fundamental role. Monotonic
convergence is nowadays no more considered so important. It has indeed been demon-
strated [2] that conformity (a condition for monotonic convergence} does not always
speed up the convergence to the exact solution, i.e. less approximate solutions have been
obtained for some problems when the monotonic convergence requirements were verified
than when they were not.

The capacity for convergence to the exact solution of some kinds of elements has been
already examined in the case where continuity is preserved [3]. The author himself presented
a first proof [4] of the known criteria {2, 5] which is also valid for cases where continuity
is violated.

If continuity is not violated, the finite element method becomes a particularization of
the classical Ritz method. This connection with the Ritz method has been observed very
often but very seldom studied in detail and explored.

It is very important to notice however that, if continnity is violated, the finite element
method is not a simple application of the Ritz method. A section of this paper will be
devoted to demonstrating that convergence to the exact solution is still possible even in
those cases.

2. STATEMENT OF THE PROBLEM

Let 4 be a linear bounded operator defined for a dense linear subset M of a real Hilbert
space H. Assume the operator 4 to be symmetric and positive definite [1].

Let {4, v} denote the scalar product of two elements of H. Let [u|l denote the norm of
an e¢lement in H.

This paper is concerned with the solution of the equation

Au = f (1

that is, in the determination of the element u which the operator A4 transforms into f’;
u and [are elements of H.

Equality (1) is meaningful if element u belongs to M. It is possible however that no
element of M can correspond to an arbitrary element fof H ; this is what is meant by stating
that equation (1) can have no solution in M.

1t can be shown [1] that, if equation (1) has a solution, this will be unique. It can also
be demonstrated that the solution of equation (1) minimizes the functional

Flu) = (Au,u)—2Au, ) 2

and conversely, that the element which minimizes F in M satisfies equation (1).
If A is positive-bounded-below, and not merely positive definite, that is, if

(A, u) S9Hu, u) 3)

y being a real constant, then the field of definition of A can be extended so that equation (1)
has a solution for an arbitrary element fof H.

The extended field of definition belongs to a new Hilbert space, H ,, which is a dense
subset of H, defined as the completion of the Hilbert space which results from associating
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with the elements of M the scalar product
[u, v] = (Au, v). (4)

This scalar product, which will be denoted by square brackets, is called the energy
product. The norm in H , is termed the energy norm and will be denoted by bold vertical
rules:

[u] = /[u, ul. (5)
The energy norm of the difference of two elements is the distance between both:
d(u, v) = |u—v]. (6)

The square of the energy norm is termed energy [1].
If u, is the solution to equation (1), then

Aug = )
Functional (2) can thus be expressed as
F(u) = [u, u] —2[u, ue). (8)
It can further be transformed into
F(u) = [(u—uo), (u—up)] —[ug, tg) = Ju—uo|* = |uo* )

Expression (9) makes it clear that the minimum value of F in H, is obtained for
u = uo.

A sequence of elements {u,,}, belonging to the field of definition of a functional F,
is termed minimizing [1] for F if

lim Fu,,) = Fo (10)
F, being the exact lower bound of F.
As
Fy = F(up) = _I“olz (11)
equation (10) implies
'!Ln:o |tan—o| = 0. (12)

Equation (12) means that any sequence which is minimizing for F converges in energy
to the exact solution. Energy convergence is characterized by the fact that the distance
between each term of the sequence and its limit tends to zero [1].

3. PARTICULARIZATION TO VECTOR FIELDS

Let Q be an open, connected and bounded domain with a finite number of dimensions.
Let S be its boundary, which is supposed to be composed by a finite number of closed,
smooth or piecewise smooth stretches.

Let Q be the closed domain resulting from the combination of Q and S.

Take for space H the space of the real vector fields (with a fixed number of components)
whose moduli are quadratically summable over Q. The scalar product of a pair of elements,
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u and v, will be given by the Lebesgue integral :
(u,0) = f uvdQ+ J a'vds = f w'vdQ {13)
Q s Q

u and v being column vectors containing the components of # and v.

The number of components of the vectors is independent of the number of dimensions
of the domain.

Equation (1) can be written in a more explicit form:

Au=1{ (14)

A being a matrix of operators. These operators are from now on assumed to be differential.

The fields belonging to M are not supposed to satisfy ali the boundary conditions of
the problem. Those which are necessarily satisfied by every field in M and by each field
in H,, are termed principal boundary conditions. The remaining ones are called natural
boundary conditions.

Any field belonging to M is supposed to meet homogeneous principal boundary
conditions. Besides, both the field and the derivatives involved in A must be continuous.
These derivatives will not however generally be continuous for every field in H ,.

The energy product between elements belonging to M can be computed by the use of
equations {13) and (4}:

[, 0] = J (AwvdQ (15)
~Q

An energy product involving elements in H , not belonging to M can be computed as
the limit of the energy product of a sequence of pairs of elements belonging to M.

It is assumed that the expression (15) for the energy product can be transformed,
by suitable partial integration, into

fu,v] = J;: (Ru)"L(Rv) dQ. {16)

L is a square, symmetric and definite positive matrix, R a differential operator.
The energy of any element u in H 4 is given by

lu,u] = L (Ru)"L(Ru) dQ. (17)

The expression under the integral sign receives the name of energy density.

Assume that Ru involves derivatives of component u; with order not greater than p;.
The derivatives of order (p;— 1) or less are termed principal derivatives.

As the energy (u, u] of any field u belonging to H , must be finite, (Ru) has to be bounded
almost everywhere in Q for every field in H,. The field components and their principal
derivatives must thus be continuous almost everywhere in Q.

In what follows, f will be supposed such that the exact solution falls into the subset
C, = H , of the fields whose components are continuous everywhere in Q, together with
their principal derivatives. These continuity properties will be referred to in the text as
principal continuity conditions.
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4. APPLICATION TO LINEAR THEORY OF ELASTICITY

Flastic theories involve three kinds of magnitudes: stresses, strains and displacements,
whose vectors will be denoted by o, € and u.

These magnitudes are related by three kinds of field equations which can be symbolized
as follows:

(@) Equilibrium equations :

Ee = X (18)
(b) Strain—displacement relations:

Du =¢ (19)
(c) Stress—strain relations:

o = He. {20)

E and D are differential operators, X is the vector of the body force density components,
H is a symmetric positive definitive matrix.

Equations (18), (19) and (20) are valid on Q. On the boundary S, the equilibrium
equations become:

No = p. 1)

N is a matrix whose elements depend on the orientation of the normal vector at a
given boundary point. p is the vector of the tractions applied to the boundary.

The analysis of the equilibrium of elastic bodies reduces to finding the solution of the
system of field equations (18), (19) and (20) which satisfies certain boundary conditions.
The simplest and most important types of boundary conditions can be expressed directly
in terms of displacements or tractions applied to the boundary. Let S; and S, denote the
portions of the boundary where tractions or displacements are respectively prescribed.

Operators E and D and matrix N are such that the following relation holds if u is
continuous:

J. ¢’ (Du)dQ = f (Eo)"udQ+ J (No) uds. (22)
o Q s

In this relation, vectors ¢ and u are not necessarily related by the stress—strain relations
(20).
Combining equations (18), (19) and (20), we obtain:

EHDu = X. (23)
Combination of equations (19), (20) and (21) yields:
NHDu = p. (24)
Comparing equations (23) and (24) with equation (14), there results:
A = EHD )
}for points in Q 25)
f=X
A = NHD )
¢ for points on S. (26)
=P
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It can easily be shown that operator 4 defined by equations (25) and (26) has the
properties which were indicated in Section 2, if the displacement boundary conditions are
enough to eliminate rigid body motion.

Using equation (15) we obtain:

(u,v] = J (EHDuw) v dQ+ f (NHDu) v ds. 27
Q S
Equation (22) allows the transformation of (27) into:

[u,v] = L (Du)"H(Dv) dQ. (28)

Operator R coincides thus with D and matrix L with H.*
Functional F becomes:

F =f sTHsdQ—2J XTudQ—ZJ p'uds (29)
Q Q s

L.e. twice the total potential energy, if the displacement boundary conditions are supposed
to be homogeneous.

The theorem of the minimum total potential energy, which states that the exact solution
is the one, from all the compatible elastic fields, which makes the total potential energy a
minimum, is thus a particularization of the theorem which affirms that the solution of
equation (1) makes F a minimum in the space of the fields with finite energy.

The formulation which has been presented is quite general as it is valid not only for
linear two and three-dimensional elasticity but also for linear theories of plates, shells and
beams.

In the case of a plate, for instance, vector u contains the transverse displacement and
two rotations, vector € contains the curvatures and the transverse shear strains, vector ¢
contains the bending and twisting moments and the transverse shearing forces.

Operator D involves derivatives of the first order. The principal derivatives are thus of
order zero. This means that the elements of C, are elastic fields with displacement
components continuous everywhere in Q.

The principal boundary conditions, which are supposed to be homogeneous, are those
involving linear combinations of the displacement components. The natural boundary
conditions are expressed in terms of stresses.

A very frequent simplification in the analysis of plates, shells and beams consists in
neglecting the transverse shear deformation.

This makes it possible to reduce the number of the unknowns to one (the normal
displacement) in the theory of plates, and to three (the normal displacement and the
tangential displacements) in the theory of thin shells.

* The equation
f (Ru)L(Rv) dQ = f (Au)TvdQ+ f (Aw)TvdsS
Q Q s

which results from the combination of (15) and (16), performs thus in the general theory of the role of the work
equation (22).
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The simplified theories represent by themselves also a particularization of the general
problem formulated in Section 2. The only field components are now the independent
unknowns [1].

The rotations become in the simplified theory first derivatives of the normal displace-
ment. The corresponding energy density involves thus first derivatives of the tangential
displacements and second derivatives of the normal displacement, so that the principal
derivatives are the derivatives of first order of the normal displacement and the derivatives
of order zero of the tangential displacements.

The energy will be finite if the normal displacement and its first derivatives, as well as
the tangential displacements, are continuous everywhere in . As the first derivatives of
the normal displacement are the rotations, the elements of C, are still the elastic fields
with all the displacement components continuous everywhere in Q.

Similar conclusions could easily be derived for beams.

The principal continuity conditions are thus the same both in the simplified theories
and in the corresponding theories where the transverse shear deformation is not neglected.

5. EQUIVALENT PROBLEM

Consider the domain Q subdivided into a number of subdomains, Q, Q2 Q3,...,Q¢, ...
and let H® be a real functional Hilbert space whose elements are fields defined on the
general closed subdomain Q°. The scalar product between any pair of elements, u¢ and v*,
belonging to H* is defined by

(e, v°) = f v dQ+ f uveds = | uwvedQ. (30)

. . e
Let H, be another Hilbert space (index n refers to a certain degree of subdivision of Q

into subdomains). Each element u,e H, may be regarded as a piecewise defined field.

It represents, however, not truly a single field defined on , but a set of fields u°® (one per

subdomain), belonging to the different spaces H¢. Such fields are called subfields of u,.
The scalar product in H, is defined by

(s D)y = D (U 0°)° (31)

where u® and v° are the subfields of u, and »,, and 2 denotes a summation over the whole
set of subdomains.

Let M® be a dense linear subset of H® Every field in M*¢ is assumed to coincide, on the
closed subdomain €}, with an arbitrary field of M.

Let M* be the field of definition of a linear, bounded and symmetric differential operator,
defined to be such that, within Q¢,

Au® = Avu° (32)
and, on S¢,
(Aw®)Tve dQ = (Ru®)"L(Rv*) dQ — (Acu®)Tve dQ (33)
Se Qe Qe

u® and v° being arbitrary fields belonging to M°.
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Make

[ue, v°)° = f (Ru9)"L(Rv*) dQ = | (Au®)Tv¢ dQ = (4°ue, 1°)". (34)
e !ZE

Call M, the dense linear subset of H, whose elements have subfields belonging to the
sets M*, and consider a linear subset of M, such that, given any pair of its elements, u, and
v,, with subfields u® and ¢, the magnitude

(s 0]y = 3 [u%, 0)° (35)

can be properly chosen as their scalar product. Let H ,. be the completion of the Hilbert
space obtained by associating the scalar product (35) (termed energy product) to such
subset.

The distance between any two elements in H ,. will be given by

Aty 0) = /[ty 0,), (U= )] = |ttg— 10, (36)

Consider now the linear subspace of H,, H,, whose elements are such that their subfields
u'¢, corresponding to adjacent subdomains, take equal values at points lying on the
common interface.

Let H, and H, be the field of definition and the range of an operator B, such that, if

B,u, = u, (37

the sum of the values taken on the interface of two adjacent subdomains by the correspond-
ing subfields of u, is equal to the sum of the same values respecting u,. The effect of the
operator B, is thus to distribute that sum equally between the subdomains in contact.

Let v, belong to H, and let v denote its subfields. We can write

W)y =Y @&, v =Y | wvedQ =3 | wved
e e vQ° e vQ© (38)
=) (W 0") = (up, vy = (Bytty, U))n-
Let M, be the field of definition of a new operator, 4,, such that
Anty = B, f, (39)

in which f, is an element of H, with subfields f¢ = A°u°.
By virtue of equations (38) and (39), we have

(Apttns U)a = (By fu Uy = (s U)y = 2. (AU, )0 = 3 [, 01 = [up, vp]n (40)

Consider now the subset of H, whose elements fulfill the condition that all the corre-
sponding subfields coincide, within their respective subdomains, with a given field u
belonging to H 4 (the same for all the subdomains). It is clear that such subset is contained
in H,. Call H, the Hilbert space obtained by associating the scalar product {u,, v,], to
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such subset. As

[t )y = Y10 = Y | Ru)TLRV)dQ

e JQ°

_ f (Ru)TL(RY) dQ = [u, 0]
Q

[u,, V], is @ proper scalar product. No contradiction is thus introduced if H,  is assumed
to be contained in H ,..

Call C,, the subset of H , corresponding to the subset Cy of H 4.

Consider the equation

Aty = f (42)

The solution of equation (42) in M, is generally not unique and the operator A, not
positive definite. If, however, the field of definition of A, is restricted to H ., then the
operator A, becomes positive definite. Indeed, as H 4, is contained in H,, (40) permits to
write

(Anthns Un)y = [, U], > 0. (43)
Consider the functional
F, (uy) = [y, tyly— 2up, fo)- (44)
Let u,, denote the solution of (42) in H . Then
Ao = f. (45)
If u, belongs to H,, then
(s S = (s Agthonly = [y, Uopln- (46)
Introducing (46) in (44), there results
Folun) = [ty Up)n—2[ty, tionln = [(t4s— tton), (s — thon)] — [Uom> Ugnl- (47)

Expression (47) makes it clear that u,, minimizes F, and that any element which
minimizes F, in H, must coincide with u,,. The solution of (42) in H , is thus unique.

Assume now that f, vanishes on the subdomain interfaces, and let f be any field in H
which takes the same values, within the subdomains Q¢, as the subfields of f,. Let u, be
the element in H 4, which corresponds to the element u of H ;. Then

(W [y = 2 (S fF =3 | w'fedQ

e vQ (48)
=) qudQ+fqudS=(u,f).
e vQe S
By virtue of (41) and (48),
Fyu,) = [u, u] —2u, f) = F(u). (49)

Let ug be the field of H, which corresponds to u,,. By virtue of (9),

Flug) = [(up—uo), (uo —up)] — [ug, uo)- (50)
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As F,(u,) = F(u) and u,, minimizes F,(u,) in H 4 , uy minimizes F(u) in H ;. But equation
{50) shows that F can only be minimized by uj if u; coincides with u,. Thus the solution
of equation (42) in H ,_coincides, within each subdomain, with the solution of equation (1)
in H,.

This means that the problem of the solution of equation (42) is equivalent to the problem
of the solution of equation (1).

The concepts introduced along this Section represent a generalization of the concepts
introduced in the preceding ones. It is convenient to interpret such generalization in terms
of three-dimensional Elasticity.

Operator A° has the same meaning for subdomain Q¢ as operator A for the global
domain, Q. While A is defined by expressions (25) and (26), respectively for points located
within Q and on S, operator 4°is defined by the same expressions for points located within
Q°and on S°

f. represents an external force distribution acting on each subdomain of the
body. Assuming that f, belongs to H, is equivalent to assume that the total force
acting on the interface between two adjacent subdomains is equally distributed between
both.

The value taken by f, on the subdomain boundaries are thus half the surface density
values of the forces acting on those interfaces. These values must vanish, if the body force
volume density is to be bounded everywhere in Q.

To solve equation (42) means to determine an elastic field which verifies equation (23)
within each subdomain and equation (24) on §, and whose stresses present, on the sub-
domain interfaces, the discontinuities required to equilibrate the external forces applied
on such interfaces. Any solution of equation (42) equilibrates thus the external force
distribution symbolized by f,.

The solution of equation {42) becomes also compatible if it belongs to H , , because the
displacement boundary conditions are then respected on S, and the continuity of the
displacements is preserved across the subdomain boundaries. The corresponding subfields
coincide thus, within each subdomain, with the solution of equation (1).

6. THE FINITE ELEMENT METHOD

The finite element method is a general technique of numerical analysis which provides
an approximate solution for equation (1).

In this method, domain Q is considered to be decomposed into a finite number of
subdomains and families of fields are considered which have different analytical expressions
inside each subdomain.

A finite element is a closed subdomain, Q¢, together with the family of fields which are
allowed to occur within it. This family is a linear combination with coefficients gf of a
finite number of unit modes, so that each field of the family corresponds to ascribing
particular values to the parameters g;.

The values of the field components and its principal derivatives, at a certain number of
points on the boundary of the elements, called nodes or nodal points, are as a rule chosen as
parameters.

The type of an element refers to its general shape, nodal point specification and to the
allowed fields, analytically defined by expressing a general field u° in terms of the parameters
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and the coordinates with respect to a given frame:
u = @°(xy, X5,...)q° (51)
q° is the vector of the parameters.*

Elements @f; of matrix ¢° are supposed to be continuous and have continuous deriv-
atives of order (p;— 1), or less, in the closed domain ¢ occupied by the finite element e.
The unit modes are defined by the columns of ¢°.

We suppose that each field component depends only on its own values at the nodes and
on the values taken by its principal derivatives also at the nodes. Thus, if g; corresponds
to the field component uf or one of its derivatives at any node of the element, all the
magnitudes @f; for which k # i will be equal to zero.

If g4 corresponds to a derivative of order s of uf, ¢f; will take the form

Xy X
(p?j(xl, X2, ceay le) = (le)slpfj (1713 l_ez’ .- -) (52)

in which [° is a typical dimension of the element, for instance its maximum diameter, and
¢; 1s a function which does not depend on the absolute dimensions of the element. This is
necessary in order that equation (51) can be homogeneous.

The different finite elements are compatibilized through the specification of reduced
continuity conditions. These require that the values of the field components and their
principal derivatives be the same at coincident nodes of adjacent elements and equal the
prescribed ones at the nodes located on S,, the portion of S where the principal boundary
conditions are specified.

A point of the domain is said to be a node of the system if it is a node for one or more
elements.

Let q, be the vector of the field components and their principal derivatives at every
node of the system but those which are located on S,. The reduced continuity conditions
can be expressed by writing for each element

q° = Teq, (53)

where matrix T¢ depends on the topology of the system.

Equations (53) show that the knowledge of q, is enough for the definition of the field
within every element of the system.

The reduced continuity conditions are generally not sufficient to make the field
components and their principal derivatives continuous across the element boundaries.
This depends on the type of the element.

If the type is such that the reduced continuity conditions are sufficient to ensure
continuity of the components and their principal derivatives across the element boundaries,
the piecewise defined fields generated by the system of finite elements are said to be
conforming. Every conforming field thus belongs to C,,, i.e. to the subset of H , correspond-
ing to C,.

If the continuity requirements are violated across the element boundaries, the fields
are said to be non-conforming.

Let U, be the subset of H, containing the elements whose subfields are defined by
equation (51) and compatibilized through the reduced continuity conditions. Any element

* The allowed fields need not be introduced by giving the expression of the field components directly in terms
of their own nodal values and the nodal values of their principal derivatives. They can indeed be given in terms
of equal number of arbitrary parameters which in turn can be expressed in terms of those nodal values (see [9]).
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u, € U, can be expressed, within Q¢, by

u’ = d4q, (54)
where

®° = T, (55)

Take for space H 4. (see Section 5) the space spanned by U, and H, . The distance
between any pair of elements belonging to H 4. is defined by expression (36). The discussion
of completeness and convergence will be based on that concept of distance. The distance
between any element u, in U, and any element u in H, will indeed be measured by the
distance between u, and the element in H,_ corresponding to u.

The approximate solution, u,,, which the finite element method provides for equation
(42), and thus for equation (1), is determined by making the functional F, stationary in U,,.
Such solution could be the exact one if u,, was contained in U,. As, generally, it is not,
the solution yielded by the finite element method is only approximate.

Introducing (51) and (35) in (44), we obtain:

F, =Y [q°'Kq—2¢°" Q] (56)
where
K= [ (Re)LiRg?) 0 57)
Q= f o°'f<dQ (58)
Qe
Introducing now (53) in (56), we obtain
F, = q;(3 TKT)q,— 2¢/ (3 T*"Q"). (59)
Making
K, =Y TKT* (60)
Q. =YTQ° (61)
there results

The stationary conditions for F, are obtained by equating to zero the derivatives of
F, with respect to the mutually independent parameters q,;. It results in the system of linear
equations

K.q, = Q.. (63)
Introducing (57) in (60) and using (55), we obtain

K,=Y 1| (RO)LR®)AQ (64)
e JQe
Q. =Y | o7 dh (65)

e JQe
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Matrix K, is non-singular whenever the columns of ®¢ are linearly independent. As
L is definite positive, K, is also definite positive.

If K, is non-singular, the parameters g,; can be uniquely determined by solving the
system of equations (63). Let qq,, be the vector of the parameters which verify equation (63).
Functional F, can be expressed as

Fn = qr{ann - zananOn = (qn - qu)TKn(qn - qu) - qgnanOn' (66)

As K, is definite positive, the first term in the right-hand side of (66) is positive unless
q, equals q,,. This proves that the solution of (63) minimizes F, in U,

Let now u,, and u,, be two elements belonging to U,. Let q,, and q,,, be the vectors
of the corresponding parameters. The energy product of u,, and u,, can be given by

(12, = 2 | (RUH'LRu)AQ = q7, ) | (RO)'LRP)dQq,,

e vQe e v Qe

= q{nanZn = q{nQZn = q{n z _ q)eTffze dﬂ
e v (67)
=Y | (@%q,)f5dQ=Y | ufydQ
Qe

e e JQe

= Z (u‘i’ ZIe)e = (ulns f2,n)n = (uZn’ f{n)n

where f/, and f;, are the right hand sides (of equation (42)) which u,, and u,, correspond to
(as approximate solutions).
It results from (67) that the functional F, may take in U, the following expression

Fn(un) = [U,,, un]n - Z(Un, fr:)n = [un’ un]n - 2[“71’ uan]n

= [(un - uan)9 (un - uan)]n - [uan’ uan]n

(68)

which makes it clear that u,, minimizes F, in U,. Such expression will be used in Section 10.

7. THE RITZ METHOD

The method just described is justified if it can generate a sequence of fields converging
to u, (the solution of equation (1)), when successive subdivisions are considered with
elements of invariant type but decreasing size.

Conditions to be met by matrix @€ in order that this convergence may be ensured can
be established if it is remarked that the finite element method is related to the well-known
Ritz method [1, 6].

The Ritz method is a technique for generating a minimizing sequence for a given
functional, say F. This technique, which can be used whenever H is a separable space,
is based [6] on the determination of a sequence of families, {V,}, satisfying the following
conditions :

(a) the sequence is complete in energy with respect to a class C = H, containing u,
(completeness requirement);

(b) the nth family depends on a finite number, N, of arbitrary parameters;
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(c) every element which can be obtained by ascribing arbitrary values to the parameters
belongs to C, (conformity requirement).

In what concerns condition (a), it is remembered that a sequence of families of elements
is said to be complete in energy with respect to a given class C = H 4 if it is possible, for a
specified ¢ > 0, to find an integer N such that, in each family with order n > N, there
exists an element u,, which satisfies the inequality.

dlu, u,,) < & (69)

where u 1s any element of C.

The terms of the minimizing sequence {V,,} are obtained by minimizing F in each
family V.

The elements of the nth family are generally given as a linear combination with
coefficients g,; of N linearly independent fixed elements ¥, which are termed coordinate
elements:

N
u, =) ¥4, =Y, (70)
i=1

q, being the vector of the coefficients g¢,; and ¥, the matrix with columns ¥,,;.
Family V, becomes thus a linear N-dimensional space. Introducing (70) in (2), we obtain :

F(u,) = q,K,q,—2Q/4q, (71)
in which
K, = J- (RY,)"L(RY,) dQ (72)
Q
and vector Q, is defined by
Q, = f W, fdQ. (73)
)

The values of the parameters which make F stationary can be determined by solving
the system of linear equations

K., = Q, (74)

K, is a non-singular matrix if the coordinate elements are linearly independent [1]. The
system has thus a unique solution which provides the unique stationary point of F in V.

The finite element method can be considered as a technique for the application of the
Ritz method only if the piecewise defined fields are conforming (conformity requirement).
Only thus can indeed condition (c) be respected. The sets V, are then the subsets of H ,
corresponding to the subsets U, < H .

In order that convergence to the exact solution may be obtained, it is thus only necessary
to meet condition (a), that is completeness. It will be seen later on how this can be obtained.

Comparing (70) with (54) it can be concluded that the coordinate fields used in the
finite element method are defined by

¥, = ¢°T¢ = ®@° within element e. (75)

The analytical expression of the coordinate fields varies thus from element to element
and this piecewise definition is the main characteristic of the finite element method.
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It is also important to notice that such piecewise definition and the reduced continuity
conditions allow matrix K, and vector Q, to be assembled from simpler matrices, K® and
Q¢, connected with the finite elements themselves (see equations (60) and (61)). This is
one of the most interesting features of the method.

8. MONOTONIC CONVERGENCE

Assume a sequence of families, {V,}, fulfilling the conditions (b) and (c) stated in the
preceding section and suppose that the nth family contains all the families with smaller
order. As v, makes F a minimum in V,, we have:

F(o,) S Flv,) S F(v,) S ... S Flv,) S ... Fluy). (76)

By Bolzano’s theorem [7], the sequence {F(v,,)} converges to a limit which cannot be
smaller than F(u,). It is remarked that this conclusion is valid even if condition (a) of
Section 7 is not obeyed. If it is obeyed, then we know that the limit is F(u,).

As the inequality

F(Uan)_F(Uam) <0 (77)
holds, for m < n, equation (9) yields

|Uan_u0| < |Uam_u0|' (78)

This means that the distance to the exact solution decreases when n increases.
Convergence is said to be monotonic.

Monotonic convergence does not ensure convergence to the exact solution. On the
other hand, convergence to the exact solution is not necessarily monotonic.

Consider now a sequence of approximate solutions generated by finite elements with
decreasing size.

Conformity and the requirement that the family of fields corresponding to a given
subdivision contains the families corresponding to elements with larger sizes have been
proposed by Melosh [8] as sufficient conditions for monotonic convergence of such
sequence.

However, as the approximate solution minimizes F, in U,, regardless of conformity
being respected, the requirement that each family of fields contains the families correspond-
ing to elements with larger sizes stands by itself as a sufficient condition for convergence.
We can indeed write the set of inequalities (76) once this condition is fulfilled.

9. COMPLETENESS CRITERION

In what concerns convergence to the exact solution, we know that the Ritz method
generates a minimizing sequence and that a minimizing sequence actually converges in
energy to the exact solution.

Convergence to the exact solution can thus be ensured if conformity and completeness
are both achieved. We shall see however that completeness is the truly important
requirement.

Before proceeding further we remark that completeness of a sequence of families with
respect to a set C < H, has a meaning provided we can compute the distance between
every field of each family and any element in C (see Section 6).
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A general criterion for completeness will be stated and justified in this section. This
criterion was presented in a recent book [9] by Zienkiewicz but it has not yet been justified
as far as we know.

Let (p; — 1) be the maximum order of the principal derivatives for component u;.

We wish to demonstrate that completeness will be obtained if the general analytical
expression for uf, within element e (see equation (51)), is given* as a polynomial with a
number of arbitrary coefficients equal to the number of unit modes corresponding to the
element. Furthermore this polynomial expression must contain a complete polynomial of
the p;th degree all the terms of which are affected by independent arbitrary coefficients.
The terms of higher degree can vanish whatever the values taken by those coefficients.

We remark that, if this is the case, the field component uf or any of its derivatives of
order p; or less can take any arbitrary constant value throughout the element if suitable
values are ascribed to the parameters. In order that the derivative uf, assumes an
arbitrary constant value V in Q°, it is then indeed only necessary that the coefficient which
multiplies the monomial (x]x5 .. .) in uf be equal to V/r(r—1)...s(s—1)...,all the remain-
ing coeflicients being equal to zero.

The right hand side of equation (1) has been constrained in Section 3 to be such that
solution u, belongs to C,, so that the derivatives of order p; of solution u, are bounded
but not necessarily continuous.

In the next Sections we assume furthermore that the exact solution falls into a subset
of Cy, C;, such that the derivatives of order (p; + 1) of the field component ; are continuous
within each element. Discontinuities of the p;th and (p; + 1)th derivatives are still allowed
at points which always remain on element boundaries as the size of the elements is
progressively reduced.

Let C,, be the subset of H,_ corresponding to the subset C; or H ,.

Any field u, belonging to C;, can thus be represented inside Q° by the following
Taylor’s expansion of its subfield components:

1
U = uf(0)+uf (0). (x;—x9)+ ... +juﬁ‘ﬁf?k(0).(xj—x?)...(xk——xﬁ) +

i

+(p~+ 1),“:'?,(}1’:.:1)(0;') . (xj_x?)(xk—xl(c)) N x?)

O and O, are points of Q°. O, depends on the coordinates of the point where u; is to be
determined.
Let us consider now a polynomial field with components

1
U = (O +UL0). (=X 4 PHO0) () (D) (80)

which we call tangent field to u at O.
As all the derivatives of order (p; + 1) are bounded inside Q¢, (79) and (80) yield :

Juf ] < (1 (81)

V.
(! !

* See footnote at page 939.
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in which V, is an upper bound for all the (p;+ 1)th derivatives and [° is the maximum
diameter of element . d is the total number of the (p;+ 1)th derivatives.

By considering similar expansions for the derivatives of u;, it is possible to derive the
following general inequality :

) = W < p—rin Vy . (epimrtt {82)
for r < p;.
As operator R involves derivatives of uf of order p; or less, we have:
[R(w® —u)] "LIR(u* ~ ;)] < Vy(l)? (83)
for I¢ sufficiently small. V, is a positive number.
Thus:
[ — '), (u* =) < VI (84)

If tangent fields u'® are considered for every subdomain Q°, piecewise defining a field
ul, in Q, we obtain, by using (35),

(Jun—usl)* = [ —ur), (W —up)], < V21302 (85)

in which I, denotes the maximum value of [ in the whole set of elements.

This means that the distance between any field in C, and the tangent field u}, piecewise
defined by (80), tends to zero with the size of the finite elements.

Consider now a type of finite element generating a sequence of families of fields whose
completeness is to be investigated.

Call u/® the field within the finite element e such that the values of its components and
their principal derivatives at the nodal points are respectively equal to the values of the
components of the field u, € C,, and corresponding partial derivatives at the same points.

Suppose the general criterion to be satisfied. u'® can thus be one of the fields which can
occur within the finite element. Let this field correspond to values ¢¢ of the parameters:

ue = @°q”. (86)
On the other hand
uwe = @°q’". (87)
From (86) and (87) we obtain
|ui® —ul = loi{q5 — al°) (88)
or, considering (52),
i —ule] = 3 (P WiAgs —q}) (89)

i

in which s is the order of the field derivative to which parameter g; corresponds.
But

e e[XL X2
ij = ij(l_e’ l_e,o--) (90)



946 EpuarRDO R. DE ARANTES E OLIVEIRA

and

e(r) — 1_ ﬁa'r—?ji
Vit = T ). Sy .

For this reason,

2= uf £ = 052 A~ )
i ar e

z le s—r ij te _ fe 92
2( e ey ) 2)
As the absolute dimensions of the element do not appear explicitly in the functions

Y, these functions remain bounded as the size of the element decreases.
The same happens to the derivatives 0"y§;/d(x,/I°). .. 8(x,/I°), for r < p;, because the
functions ¢f; and their derivatives of order (p;— 1) or less were in Section 5 supposed to be
continuous. Assume the moduli of all these magnitudes remain below a positive number V.

Then

lu,e(,) e(r)ll < z le)s rV |q q{e|‘ (93)

On the other hand, as the components of u/¢ and their principal derivatives take the
same values at the nodes as the corresponding magnitudes in u*, equation (82) permits us
to write

d
|q3_e_q1[e| < m Vl X (IE)Pi‘S‘Fl (94)

when parameter g§ corresponds to a derivative of order s.

Equations (93) and (94) hold even if the p;th derivatives of u{® are discontinuous in Q¢.
This is an important remark because sometimes [10] the element itself is considered
subdivided into parts and the field admits different analytical expressions within each part.
Our proof remains valid however even if the derivatives of order p, are not continuous
across the internal boundaries of the element.

As the parameters cannot correspond to derivatives of order larger than (p,— 1), s cannot
be larger than (p;— 1) and equation (94) yields

d
lq;_e__que| < 2‘V(12)p| s+1 (95)

Introducing equations (95) in (93) we obtain:

|ute(r) _ e(r)ll < V3 (le)p, r+1dNe (96)

Ne¢ being the total number of parameters corresponding to element e.

This equation is still valid for r = 0, if the derivatives of order zero are interpreted as
the field components themselves.

The similarity between equations (96) and (82) allows a jump straight to the inequality:

(Ju, —uf])? < VaIZQ (97)
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V, being a positive number and u/ denoting the piecewise defined field which coincides
with u/¢ within a general element e.

Equation (97) means that the distance between ) and u/ tends to zero with /.
Combining (97) and (85) we conclude that the distance between u, and u; tends also to
zero when the size of the element decreases, so that, as u, is an arbitrary element of C,,,,
the completeness proof is finally achieved.

10. CONVERGENCE DISCUSSION

Consider any type of finite element which can generate a sequence {U,} of families of
generally non-conforming fields complete in energy with respect to C,.

We wish to investigate if the sequence of approximate solutions {u,,} obtained by
minimizing F, in each family U, converges in energy to the exact solution.

We know already that completeness implies convergence to the exact solution if it is
associated with conformity. It will be concluded in this Section that completeness with
respect to C, is a sufficient condition for convergence, regardless of conformity being
obtained.

Let u,, be the field in U, which presents the same nodal values of the field components
and corresponding principal derivatives as u,, (the solution of equation (42) in H, ).
As completeness is ensured, it is possible to determine N such that, for n > N,

Ao, Uen) < € (98)
¢ being a positive and arbitrarily small number.
As F, is continuous, we can find ¢ such that
Fyug) = Fyuo,) ¢ (99)

¢ being also positive and arbitrarily small.
As u,, belongs to U,, and u,, (the approximate solution yielded by the finite element
method) minimizes F, in U,

F(tan) < Fi(ut,) (100)
and
Fo(ugn) < Fyuon) L€ (101)
Let now f,, be an element of H, defined by
Jan = Anlign. (102)

As u,, is an approximate solution to equation (42), f,, generally does not coincide
with f,.
Let u,, denote the solution of the equation -

Anun = f;n (103)
in H , . Assume that u,, belongs to C,,. This assumption will later be discussed.

Let uy, be the field in U, whose components and corresponding principal derivatives
take the same nodal values as u,,. As u,, belongs to C,,, and the sequence {U,} is complete
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with respect to C,, it is possible to find N, such that, for n > N,
dn(ucn’ ubn) < 8//

¢” being a positive number, arbitrarily small.

(104)

As A, is a continuous operator, it is also possible to determine &” such that (104) implies

” Anucn - Anuan <"

¢"” being positive and arbitrarily small.

Let

Jon = Apttpn-
As u,, is a solution to equation (103),

Anlen = fan-

The inequality (105) can thus be transformed into
| fan—Sonll < €".
By virtue of (67), as u,, and u,, both belong to U,,
(dtans pn)]* = (14— Up), (than = thp)]
= ((Ugn—ttpn)s (fan—= S pn)n-
As, by Cauchy’s inequality,

"

((uan_ubn)’ (f;zn_f;m))n < ”uan_uann ”f;m_f;n”rl <ée Huan_ubn”n

we obtain
Aty Up) < JE" gy Upn ] )-
Combining (104) with (111), there results
ulthans Uen) L Apttans Upe) + Ayt they) < €
where

gV = ¢ +\/(8W\|”an_ Hpn|n)

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)

As F, is a continuous functional, it is then possible, given ¢* > 0, to determine ¢ such

that

As u,, belongs to H
F(ue) > F(uo,)-
Thus
Fluo,) +&" < Flug).
Combining (99), (100) and (116), there results

Fn(uun) < Fn(uen) < Fn(ua")ig' igv

(114)

(115)

(116)

(117)
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and thus
F(tlpy) = Fg)+e" (118)

in which ¢ < ¢ +¢".
But, as u,, and u,, both belong to U, (68) permits to write

Fn(uen) - Fn(unn) = [(uun - uen)? (uan - uen)}n = [dn(uan 5 uen)]z =g (1 19)
Combining (119) and (98), we obtain finally

dn(uam uOn) < dn(uam uen) + dn(uen? uOn) <&+ \/SVi~ (120)

Expression (120) shows that u,, converges to ug,,.

It remains to prove that u,, belongs to C,,. This assumption was indeed used to obtain
(104).

Our reasoning will be based on a theorem which is known to be valid for Poisson’s

equation Au=f (121)

Such theorem states that u has continuous second order derivatives in a domain
whenever fis a Holder continuous function in Q [12].

A corresponding theorem is lacking which refers to the general problem with which the
present paper is concerned. We are thus not sure that the derivatives involved in the
operator A4 are continuous whenever fis Holder continuous. It seems however very reason-
able to expect the theorem to be true, at least as far as linear elastic theories are concerned.
It will thus be admitted that, at least in case of Elasticity, the Holder continuity of the body
force density implies the continuity of the displacement derivatives involved in the operator.

u., denotes the solution to equation (103) in H,_. This means, in terms of Elasticity,
that u,, represents the compatible field which equilibrates the same external forces as
U, - Such forces are of two kinds : body forces distributed within each subdomain and forces
distributed on the subdomain interfaces and on S. u,, will belong to C,,, i.e. its (p;+ 1)th
derivatives will be continuous within Q°, if the derivatives involved in the operator are
continuous within Q°, and thus if the body force density corresponding to u,, is Holder
continuous within Q°.

The problem now consists in proving that the body force density corresponding to
u,, is Holder continuous within Q°, no matter how large is n. We shall not attempt to
investigate the general conditions in which such a statement is true.

Sometimes, however, the proof is trivial. This is namely the case if the type of the
element is such that the body force density vanishes or is forced to a prescribed bounded
and continuous polynomial variation within each element, no matter the values of the
parameters.

If such a common situation arises, there remains no doubt that the completeness
criterion is also a convergence criterion, even if conformity is not achieved. But, if it is
achieved, the finite element method becomes a particularization of the Ritz method, and
completeness will ensure convergence in any case.

Our reasoning can be adapted to cases [10] in which the elements are subdivided into
parts and the allowed fields have different analytical expressions within each part. The
body force density is then generally not continuous within the element taken as a whole.
Convergence will however easily be proved if each part is treated as a separate element.
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11. CONCLUSIONS

The finite element method has been presented as an analytical technique which can
be applied to a very broad class of problems.

Functional Analysis provides the frame for an abstract formulation in which some
generalized concepts, like energy and distance, with a physical or geometrical origin, play
a fundamental role. Particularly, the definition of distance between two fields, as the square
root of the energy of their difference, is an extremely convenient basis for the discussion of
convergence.

The description of the finite element method also required the introduction of the
concept of principal derivatives. Continuity of the field components and their principal
derivatives is necessary if the energy density is to be finite. In two and three-dimensional
Elasticity, for instance, as the continuity of the displacement components is enough to
ensure a finite energy, the principal derivatives are of order zero.

The fact that the finite element method is based on the decomposition of the global
domain into subdomains, made it convenient to transform the initial problem into an
equivalent one. In Elasticity, for instance, the initial problem consists in the determination
of an elastic field which verifies the field equations everywhere within the domain, while
the transformed problem consists in the determination of a set of fields respecting the field
equations within each subdomain and verifying compatibility and equilibrium conditions
on the subdomain interfaces. In both cases the conditions imposed on the external boundary
must be fulfilled.

In the finite element method, the principal continuity requirements are replaced by
reduced continuity conditions which may imply the fulfillment of the principal continuity
conditions everywhere in the domain. If they do, the piecewise defined fields are said to be
conforming but non-conforming if it happens otherwise.

This is an opportunity to remark that conformity has been with difficulty obtained for
plate and shell elements [10]. Such difficulty resuits from the fact that rotations are usually
regarded as derivatives of the transverse displacements. This has not however to be so
(see Section 4), and conformity can be easily obtained if the rotations are considered as
true displacements.

When conformity is achieved, the finite element method becomes a particularization
of the Ritz method. Such particularization is characterized by the piecewise definition of
the field, which, together with the reduced continuity conditions, allows matrix K, and
vector Q, (the stiffness matrix and the force vector in elastic problems) to be assembled
from simpler matrices and vectors which refer to each finite element.

The matrix analysis which is developed in this paper for the determination of K, and
Q, is a generalization of the displacement method of Structural Analysis. The force
method [4] could also be used.

Completeness is a sufficient condition for convergence to the exact solution in the
Ritz method, i.e. if conformity is achieved.

A general completeness criterion is justified in Section 9. It is proved that such criterion
ensures completeness with respect to a set C, containing the fields whose derivatives of
order up to (p;+ 1) are continuous within the subdomains corresponding to the elements.
The principal derivatives are of order p;— 1, so that the criterion does not ensure complete-
ness with respect to the set of all the fields with finite energy.

In two and three-dimensional Flasticity, the (p;+ 1)th derivatives are second order
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derivatives. Their continuity implies the continuity of the body force distribution density.
The continuity of the body force distribution density is not however a very strong restric-
tion, as discontinuities of the first and second derivatives of the displacements are still
admitted at points which remain on element boundaries when the size of the elements is
progressively reduced. The solution of problems in which external forces are distributed on
element interfaces is thus not excluded.

Completeness with respect to C, is a sufficient condition for convergence whenever
conformity is achieved. However, it was shown in Section 10, that completeness implies
convergence in any case, i.€., even when conformity is not achieved, if the body force density
remains continuous and bounded within each element as n tends to infinity.

Along the whole paper the principal boundary conditions (which correspond to
displacement boundary conditions in Elasticity) were supposed to be homogeneous. If they
are not homogeneous, the finite element method can however still be applied. All that must
be done is to make the values of the field components and their principal derivatives
coincide with the prescribed values, at the nodes which are located on S,. As the size of
the elements tends to zero, we obtain approximate solutions tending to a solution which
obeys the field equation inside the domain (in case the convergence criterion has been
respected) and the prescribed boundary conditions on the boundary. This is of course the
exact solution.

It remains to indicate that the formulation presented in this paper is not the only
possible one.

In the present paper, the nodal values of the field components and their principal
derivatives are indeed chosen as parameters in terms of which the reduced continuity
conditions are to be expressed.

It is however possible, in elastic problems, to take as parameters the resultants
and moments of the forces distributed on the element boundaries. The analysis starts
then from reduced equilibrium conditions, which are directly expressed in terms of
such parameters [11]. The interest of this second formulation is that it can generate
equilibrated solutions while the first formulation leads to compatible ones (if conformity
1s achieved).

This second formulation may be generalized, as well as the first, to cover the general
problem with which the present paper is concerned. It will be shown in a next paper how
this can be done and which criterion may be used to ensure convergence to the exact
solution.
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AGcTpakT—MeTO 1 KOHEYHOIO 3MEMEHTA ABATETCH B HACTOsAUIee BpeMs HauOojiee oO6lIMM W OOHHM U3
MOLUHBIX ¢cnocoboB pacyeTa KOHCTPYKUHIA.

OH OKa3bIBAETCS TAKXKe OOLMM MaTemaTHyeckum Meronaom. InaBHoil 3apmaveit paboTer sBjseTcs
NpeacTaB/IeHHEe UMEHHO ITOro acnekTa npodbiemst. McnonbiyeTest hyHKUMOHAIBbHBINA aHaMN3 KaK UIEATIbHOE
opyaue ans obueit abcTpakTHOH GOPMYITHPOBKH.

OCHOBHBIM s IPUMEHEHMSE ITOTO METO/AA SABIACTCA OMNpPEAC/IEHHE CXOAWUMOCTH K TOYHOMY DELUEHHH
MOC/IEAOBATENIBHOCTH TIPHOJIMKEHHBIX PEUICHH, TTONYyYEHHbBIX HA OCHOBE MOJEJEH KOHEYHbIX JJIEMEHTOB,
NpH YMEHbLUIAHUU pa3Mepa.

[na cnaydas COOTBETCTBHS MEXAY JJIeMEHTaMH, METOI KOHEYHOrO 7JIEMEHTA OKa3blBAETCS YACTHBIM
cayyaem metoaa Putua, 1ak 4TO CXOAMMOCTb MOXKHO rapaHTUPOBaTh HACTOMBKO HACKONBKO HOCTHIHYTA
MOJIHOTA.

B pabote obcnaBbiaercs OOWMIL KpUTEPHH NOIHOTHI. DTOT Kputepuil TpebyeT, yTOOBI KOMIIOHEHTHI
[ONA M BCE WX NPOU3IBOAHbBIE, NOPAAKA HE BbIlIE cTaplued NPOU3BOAHON, BXOMASAILUECH B BbIPaXEHUE OIS
MJOTHOCTH PHEPTUM, MOTJIH NMPUHUMATH KAKOE MO0 NMOCTOAHHOE 3HAYCHME B ITPEAEIAX 3/IeMEHTA.

HakoHel I0Ka3bIBAETCS, TO TAKOW KPHUTEPHIA HBISETCA Takke OOMM KPHUTEPHEM CXOAMMOCTH, TO
€CTh AOCTATOYHBIM YC/IOHEM CXOAMMOCTH, AAXKE €CJIM He NOCTHUracTCsl COOTBETCTBHSA.



